
Game-based Learning to Teach Computational Thinking
to High School Students.

Guided by

Prof. Ravi Poovaiah

IDC School of Design, IIT Bombay

By

Lokesh Kumar V M

(206330003)

M.Des Interaction Design (2020-2022)

IDC School of Design, IIT Bombay

1. Introduction

Children must be taught how to think, not what to think
-Margaret Mead.

All over the globe, governments were introducing some form of
computing curriculum from kindergarten—to five years
onwards. Over 30 countries have introduced a mandatory
computer science curriculum for grades KG to 12. With the
increase in global demand, the NEP 2020 of India has made
coding a mandatory subject from class 6.
The government took all these initiatives to prepare students for
21st-century skills. Computation skills, thinking skills, innovation
skills, problem-solving skills, and others were identified as
essential parts of 21st-century skills. However, sadly only very
few parts of the curriculum accommodate such a pedagogical
approach to tackle this problem.

After analyzing the current structure of the CBSE curriculum,
starting from the content of the 11th std CBSE computer science
book since programming officially starts in the 11th grade, when
students choose their respective stream. The index page of the
book has been shown for reference in figure 1. There are no
lessons on how to acquire the thinking skills required to code.

Fig 1. 11th Std CBSE Computer science book.

However, in advance of, NEP 2020. CBSE has collaborated with
Microsoft to develop resources that focus on project-based
learning. Especially using visual coding language, the trend of
using boring text-based coding language has been changing to
visual coding
language in the initial stage of learning to code. NEP 2020 uses
Minecraft code, make code as shown in figure 2 and 3, and
scratch along with python to teach coding from the sixth to the
eighth standard. These are introductory courses.

7

With an increase in the complexity of the curriculum, it requires
an increase in pedagogical techniques and competencies.
Especially in computer science, where coding will be introduced,
in order to make it easy for students, a strong foundation is
needed, which can be achieved through teaching how to think for
such computations rather than teaching the coding language or
various algorithms. We focus primarily on cognitive ability called
“Computational thinking” and making it exciting and easy to
understand through a game-based learning approach for
students entering high school.

Fig 2. Minecraft Code by Microsoft, to teach coding.

Fig 3. Make code by Microsoft to teach coding.

8

2. Content

Why Computational thinking?

Computational Thinking could enable students to think in a
different way while solving problems, analyze everyday issues
from a different perspective, and even apply it to various other
subjects, apart from computer science.

What is Computational Thinking?

Definitions of Computational thinking

various computer scientists across the world curate several
definitions of computational thinking. Definitions of
Computational thinking as given in the book “Developing
Computational Thinking in Compulsory Education by the
European Commission, Joint Research Centre” [9].

● “Computational thinking is the process of recognizing
aspects of computation in the world that surrounds us,
and applying tools and techniques from Computer Science
to understand and reason about both natural and
artificial systems and processes”.

● “Computational thinking is the thought processes involved
in formulating problems and their solutions so that the

solutions are represented in a form that can be effectively
carried out by an information-processing agent”.

● It is about Conceptualizing, not about programming.
● It is a fundamental skill, not a rote skill.
● A human way of thinking, not how the computer thinks.
● Complements and combines mathematical and engineering

thinking.
● It is about Ideas, not artifacts.

The International Society for Technology in Education (ISTE), in
collaboration with the Computer Science Teachers Association
(CSTA) published a definitional list of computational thinking
characteristics [6]. These include the point below but are not
limited to:

1) Formulating problems for use with a computer to facilitate the
solution.

2) Logically organizing & analyzing data.

3) Representing data through abstractions.

4) Automating solutions through algorithmic processes.

5) Identifying, analyzing, and implementing a possible solution
as the most efficient & effective combination of steps and
resources.

6) Generalizing and transferring this process to a variety of
problem areas.

9

Comparison between Design thinking &
computational thinking.

In this section, we talk about understanding computational
thinking with respect to the design thinking process that
designers generally aware of.
“Design thinking and computational thinking: a dual-process
model for addressing design problems” [13] by Kelly, N., & Gero
explains the relationship between design thinking and
computational thinking and how to use them in the design
process. The graph is created by two orthogonal ontological
categories, with DT & CT located in space, as shown in figure 4.

Fig 4. Graph showing the relation between DT and CT.

Table 1, shows the dual-process model where a designer used
both thinking skills to solve the problem.

Table 1. The dual-process model of design thinking and
computational thinking.

As suggested in “Design thinking and computational thinking: a
dual-process model for addressing design problems, " both
processes were used in this project.
Using design thinking to identify the big picture (like
understanding the user and defining problem space.) and
computational thinking to figure out the sub-problems (like
breaking down what needs to be taught and elements to consider
in-game).

10

Importance of Computational thinking

● Computational thinking can also be applied in STEM and
anywhere that requires a computer to solve a problem.

● It is a way of human thinking, it is not the computer's
calculation model.

● It is used to extend the foundation of mathematics using a
combination of mathematical thinking and engineering
thinking.

● It is a way of the finished product of thinking.

● It addresses most of the 21st-century skills.

● Many developed countries have recognized the potential
of Computational thinking and included it in the
educational curriculum starting from kinder garden.

11

Concepts in Computational Thinking

There are various concepts in the computational thinking process [5] used in problem-solving, as mentioned in table 2.

Table 2. List of categories in Computational thinking.

12

Scope of project

Out of the 19 concepts in computational thinking, the highlighted
ones are the most important and the bare minimum to achieve
computational thinking.
For the scope of the project, we were focusing on the majorly
accepted concepts in Computational thinking which will be
enough for problem-solving and formulate proper instructions for
the computer. Which are Decomposition, Pattern Recognition,
Abstraction, and Algorithm as shown in figure 5. This project
focuses on teaching it in a simple, fun and easy way to understand,
without using computer science.
Also, the project doesn't focus on any kind of computer science
concepts like coding languages or coding concepts like data
structures, syntax, OOPS, etc.
A simple example of computational thinking is mentioned in
figure 6.

Fig 5. Concepts in computational thinking

Fig 6. Example of computational thinking in making pizza.

The following section explains the four steps in computational
thinking, (Decomposition, Pattern Recognition, Abstraction, and
Algorithm).

13

Concepts in focus

1. Decomposition

Breaking down problems into smaller sections.

• Breaking down problems into smaller parts can make
complicated challenges more manageable. This enables other
computational thinking elements to be applied more effectively to
complex challenges. The solutions to the more minor problems
are then combined to solve the original, larger problem.

• Real-world Examples: For instance, when you clean your room,
you may put together a to-do list. Identifying the individual tasks
(making your bed, hanging up your clothes, etc.) allows you to see
the smaller steps before you start cleaning.

2. Pattern Recognition

Recognizing if there is a pattern and determining the
relations or sequence etc.

• Examining the problem for patterns, or similarities to previously
solved problems, can simplify the solution. Pattern recognition
can lead to grouping, organizing, or streamlining problems for
more efficient outcomes. Conversely, a lack of patterns is also
useful because it means there is no more simplification to be done.

• Real-world Examples: You have likely used pattern recognition in
games like UNO, and checkers. Sports like football and basketball
also use pattern recognition to identify the opponent’s strategy.

3. Abstraction

Generalization of a problem — focus on the big picture and
what is essential.

• Taking a step back from the specific details of a given problem
allows for creating a more generic solution. This requires
analyzing the problem to remove extra detail & highlight the
essential parts. then, begin brainstorming a solution to the
problem.

• Real-world Examples: Public transportation maps are examples
of abstraction that you may encounter often. The maps show only
the important information (the stops, the general direction that
you are heading) and leave out the finer details.

4. Algorithm

Step-by-step instructions to solve a problem.

• When solving a problem, it is important to create a plan for the
solution. Algorithms are a strategy used to determine the
step-by-step instructions on how to solve the problem. Algorithms
can be written in plain language, with flowcharts, or pseudocode.

• Real-world Examples: We use algorithms daily, normally in the
form of step-by-step instructions. Recipes, instructions for making
furniture or building blocks sets, plays in sports, and online map
directions are all examples of algorithms.

14

Ways of Learning CT

Categories of 16 various learning
strategies adopted in the pedagogy of
computational thinking skills. Data is
taken from the literature review “How
to learn and how to teach
computational thinking: Suggestions
based on a review of the literature”
[5], a meta-review of the studies
published in academic journals from
2006 to 2017.

Among these Project-based learning,
collaborative learning, and
game-based learning are the widely
used methods to teach CT.

Table 3. Categories of learning.

15

Directions to explore

We choose game-based learning/ play and learn approach over the Instructions design approach because games or game-based
applications are an increasingly important approach in cognitive training, learning, and educational interventions. It is because of their
ability to keep learners motivated to play and interact with the application or learning environment [7]. Well-designed digital games can
facilitate learning because they were designed to contextualise learning based on a set of learning principles. Principles such as immediate
feedback, sandbox, customization, and adjustable difficulty to motivate players to work within their competence. Also, the current NEP 2020
coding curriculum from 6th to 8th is wholly focused on game-based learning, aligning with future curriculum. It opens an opportunity to try
game-based learning approaches to teach computational thinking.

Table 4. Directions to explore and approach methods.

16

3. Literature review
Since we were interested in exploring game-based learning, most of
the literature revolves around the play theories and game design
approach.

The following literature studied in this section are listed below:

● Piaget’s Theory of Cognitive Development.

● Play theories
○ Caillois’s Attitudes in Play Experience.
○ Csikszentmihalyi’s Flow Theory.
○ Play Pyramid by Kudrowitz and Wallace.

● Learning theory
○ Relationships of computational thinking, pedagogy of

programming, and Bloom’s Taxonomy.

● Game design frameworks
○ MDA (mechanics dynamics and aesthetics) framework.
○ DPE framework (Design play and experience).
○ Serious game design framework.

17

Piaget’s Theory of Cognitive Development

Cognitive Development theory is given by Jean Piaget, who has
been one of the most popular and influential experts in the field of
developmental psychology and education. According to him,
learning occurs in children through the process of adaptation, an
active process where children construct knowledge structures
through experience and interaction with their environment. It
also defines children's cognitive development in various age
groups, as mentioned in figure 7.

It has four factors that affect the development process of children
[12].

• Maturation: exposure to artefacts & technology need to be apt
for the age group according to their cognitive development.

• Experience: Artifacts in the environment enables them to learn
by experiencing different artifacts to form their knowledge
naturally.

• Social Interaction: Enabling social interactions in the learning
environment promotes learning action.

• Emotions and Motivation: To learn, learning and
developmental activities should be made relevant to children’s
lives and interests.

Fig 7. Piaget’s Theory of Cognitive Development.

Selection of Age group for the project:
We selected the age group of our project according to Piaget's
theory. Piaget’s theory states that the “ability to think and reason in
abstract ways” occurs only between 11 to 15 years, which will be
necessary to grasp computational thinking concepts.

18

Theories on Play

Caillois’s Attitudes in Play Experience

Caillois identified four broad attitudes in play experiences [10],
which lead to four play forms, from completely unstructured, (free
play) to structured, (rule-based play) as mentioned in figure 8.

Caillois attitude theory was used to formulate various ideas

during brainstorming, it provide opportunities to vary the nature

of game and also form new mechanisms in the game play.

Fig 8. Caillois’s Attitudes in Play Experience.

• Agon (Competition): Based on the idea of winning by
mastering a single quality/skill against opponents. there is an
equal chance of winning. E.g. chess.

• Alea (Chance): Based on the idea of winning by favor/luck,
rather than skill and experiencing pleasure in the lack of control.
E.g. slot machine.

• Mimicry (Role Playing): Based on pretending to be another to
convince others (audience) such that imaginative reality is
maintained. E.g. playing doctor-patient.

• Ilinx (Vertigo): Based on the pleasure from altering perception
and shocking self through bodily movement. E.g. roller-coaster
ride.

How we used it in the project:

The game we presented had part of structured play which

contains Agon and Alea style in resource collection mode. An

unstructured play which contains aspects of Mimicry during

construction mode in the game.

19

Csikszentmihalyi’s Flow Theory

Mihaly Csikszentmihalyi flow theory [11] talks about flow or
optimal experience representing a mental state while performing
an activity when a person is fully immersed. Flow theory is about
adjusting the gameplay states in a graph between challenge and
skill to create immersion as shown in figure 9. It is Mostly used in
games to create immersion.

Fig 9. Graph showing skill level vs challenge level in Flow Theory.

According to Csikszentmihalyi State of flow can be achieved
through:

• Clear goals and immediate feedback when required
• Equilibrium between the level of challenge and personal skill
• Merging of action and awareness
• Focussed concentration
• Sense of potential control
• Loss of self-consciousness
• Time distortion

How we used it in the project:
Flow theory can be used in the project in evaluating an existing
play and learning activity and adjusting the level of challenge with
respect to the skill or ability of children. It can be used to regulate
the difficulty of the content and analyse the ease of game play.

20

Play Pyramid by Kudrowitz and Wallace

The play pyramid is a three-dimensional map that allows
designers to classify a toy concept by placing it in a space between
four independent axes representing four types of play, as shown in
figure 10. The dimensions are sensory, fantasy, construction and
challenge-based play, and it will apply to all age groups [3].

Play pyramid is a resourceful tool for toy and play designers as
they generate different configurations by moving around on the
pyramid. A designed concept can also be explored for
modification by moving it. For example, lego blocks have been
placed in constructive play vertices.

How we used it in the project:
The game designed in the project has part of the constructive play
and pretend play, along with challenge based play. This pyramid
can be used to analyze how varying one type of play can affect
other types, based on which levels of construction and pretend
play can be modified in the game.

Fig 10. Play Pyramid by Kudrowitz and Wallace.

21

Theories on Learning

Relationships of CT, pedagogy of programming, &
Bloom’s Taxonomy

This research paper sums up the relationship between
relationships between Bloom’s Taxonomy Cognitive Domain,
computational thinking skills, & the teaching of programming [4],
as shown in figure 11.

The research found that computational thinking skills were
perceived to be the most difficult to master.
The following order of perceived difficulty is listed below, with
one being the easiest computational skill to master and six being
the most difficult.

1. Evaluation
2. Algorithm design
3. Generalisation
4. Abstraction of functionality
5. Abstraction of data
6. Decomposition

How we used it in the project:
This relationship can be used to analyze the level in which concept
of computational thinking exists and compare the level of learning
to Bloom's taxonomy of learning. It will help compare the
evaluations of computational thinking.

Fig 11. Combined relationship diagram between Bloom’s Taxonomy
Cognitive Domain, computational thinking skills, and the teaching
of programming.

22

Frameworks of game design

In order to build the game, which generally deals with framing
game rules, game mechanics, dynamics, experiences, and
playtesting. We went through various game design frameworks,
which will help build the game, they were listed below:

● MDA (mechanics dynamics and aesthetics) framework.
● Serious game design framework.
● DPE framework (Design play and experience).

1. MDA (mechanics dynamics and aesthetics) framework

MDA(mechanics dynamics and aesthetics) framework [15] is a
formal approach to understanding games that attempts to bridge
game design and development, criticism, and technical game
research.

Fig 12. MDA (mechanics dynamics and aesthetics) framework.

Mechanics describes the particular components of the game at
the level of data representation and algorithms.

Dynamics describes the run-time behaviour of the mechanics
acting on player inputs and outputs over time.

Aesthetics describes the desirable emotional responses evoked in
the player, when they interact with the game system.

2. Serious game design framework

Fig 13. The Art of Serious Game Design by Digital Education
Strategies, Ryerson University.

The Serious Game Design conceptual framework, anchored in the
Design, Play, Experience Framework [14], is depicted as a circle
divided into four equal quadrants, each representing a different

23

but equally important game element: Learning, Storytelling,
Gameplay and User Experience. The components within these
game elements are connected with double-ended arrows,
representing iteration and the interconnectedness between the
framework’s layers, as shown in figure 13.

It also presents a list of flashcards that facilitates the design
process by asking a set of questions for each quadrant of
gameplay, learning Storytelling, and User experience.

3. DPE framework (Design play and experience)

The design, play, and experience framework [16], provide a formal
approach to designing the learning, storytelling, gameplay, user
experience, and technology components of a serious game. The
framework provides a common language to discuss serious game
design, a methodology to analyze a design, and a process to design
a serious learning game.

Fig 14. DPE framework (Design play and experience)

24

4. Secondary Research

Market study

Analyzing products available in the market which focus on
game-based learning to teach computational thinking. Most of
them focus on coding, not explicitly on computational thinking, so
we started analyzing related products where were listed below:

● Tangible products
○ Taco coding by play shift
○ Tangiplay
○ Google Project Bloks

● Visual coding language /interface
○ SCratch
○ MIT App inventor
○ Agent Sheets / Agent cubes

● Games
○ Lightbot
○ CodeSpark
○ Algorithm city
○ Tomorrow corporation’s Human resource machine
○ The case study of Crabs & Turtles
○ RaBit EscApe

25

Tangible product

Taco coding by play shifu

Fig 15. Taco coding App and tangible elements.

Taco is a hybrid product that uses tangible toys and a digital iPad
display to provide a combined gameplay experience. It claims to
teach the coding ability to children by solving small puzzles. The
target audience was young students. Most of the application by
taco takes inputs through manipulating the orientation and
position of physical toys on the Ipad, as shown in figure 15.

Tangiplay

Fig 16. Tangiplay app, along with mini tangible elements.

Tangible coding toy for children of age group 4-12. Similar to Taco,
this uses Ipad and customised colour-coded toys using which
children instruct the “track building game” in Ipad as shown in
figure 16. Building blocks of coding languages like if conditions,
loops and instructions were embodied in physical form, which
takes input into the game.

26

Google Project Bloks

Fig 17. Google project bloks, with all its tangible components.

The project is a collaboration between Google Creative Lab, design
consulting firm IDEO and Paulo Bilkstein, Assistant Professor of
Education at Stanford University. It consists of pre-programmed
blocks. It is a modular design as shown in figure 17. Block is
intended to make coding a fun activity for young children by
placing it in the context of collaborative play and introducing
interactivity with the real world, for example, switching light
bulbs on and off.

Visual coding language / interface

SCratch

Fig 18. Interface of Scratch programming language.

Scratch is a high-level block-based visual programming language
and website targeted primarily at children 8–16 as an educational
tool for programming. It is developed by the Massachusetts
Institute of Technology (MIT). It has huge potential, a vast open
source library and scratch community. It uses blocks based coding
language inspired from lego as shown in figure 18. Most of the
coding education for early childhood has been taught using
scratch in abroad.

27

MIT App inventor

Fig 19. Interface of MIT App inventor.

MIT App Inventor is a web application integrated development
environment originally provided by Google, and now maintained
by the Massachusetts Institute of Technology (MIT). It allows
newcomers to computer programming to create application
software(apps) for two operating systems (OS), android and
windows. Itt follows the scratch style of visual coding language, as
shown in figure 19.

Agent Sheets / Agent cubes

Fig 20. Interface of Agentsheets.

Agent sheets is a powerful Visual Programming Language. Using
which kids from 3rd grade on up acquire programming skills for
if-then statements, cursor control, movement, loops, collision,
diffusion, and many more. Students make games and learn to
code, as shown in figure 20.

28

https://en.wikipedia.org/wiki/Computer_programming

Games

Lightbot

Fig 21. Game play screens of the game Lightbot.

Light bot is a mobile application, in which the player has to drag
and drop a set of instructions in the execution panel and then hit
play. Game executes it in order, which moves the character
accordingly. Objective in the game is to catch the light bulb. This
game has a gradual increase in difficulty as the level goes up, it
introduces new challenges like conditions and loops as shown in
figure 21.

CodeSpark

Fig 22. Game play screen of games in CodeSpark.

CodeSpark is a game based learning platform, where children can
input their blocks of command in the given space just like Light
bot as shown in figure 22. On execution the player moves
according to the instructions. It covers almost all aspects of
algorithm in computational thinking.

29

Algorithm city

Fig 23. Game play screen of game Algorithm city.

Similar to the first two games. Algorithm city also uses the same
game mechanics. Drag and drop instruction model. Only change is
the UI and few visual elements.

Human resource machine

Fig 24. Game play screens of game Human resource machine.

Tomorrow's corporation’s Human resource machine is an
interesting game which has a lot of features and a good story to
keeps player engaged. The player can use scratch like
programming language and interact with variables directly.
Players can automate works job using coding. This game is
engaging and fun to play since it has a good story and visual
elements.

30

The case study of Crabs & Turtles

Training Computational Thinking through board games:

Fig 25. Game play of Crabs & Turtles

It is a paper published in an international journal of serious games
[18]. Crabs & Turtles: is a three separate board games, namely the
treasure hunt, the race, the Pattern as shown in figure 25, that
teaches various concepts separately. It aimed to introduce basic
coding concepts and computational thinking processes to 8 to
9-year-old primary school children. The evaluation was performed
with adults to validate the design. The treasure hunt game is about
restricted movements of carb and turtle where players use a sheet
of paper to instruct and move them. 2nd game The Race is a dice
and roll game where players uncover small puzzles in each step.
3rd The pattern, which has a list of cards, players have to match
the pattern.

RaBit EscApe:

A Board Game for Computational Thinking

Fig 26. Game play of RaBit EscApe.

It is a paper published in a conference on Interaction design and
children [19]. A board game for ages 6 to 10 kids is to orient tangible,
magnetised manipulatives to complete or create paths, as shown in
figure 26. The game claims to foster children's problem-solving
capacity during collaborative gameplay and teach the basics of CT.

31

https://dl.acm.org/doi/proceedings/10.1145/2593968
https://dl.acm.org/doi/proceedings/10.1145/2593968

Market study insights

● Most of the games either vary input method/output to
create an interesting experience.

● Most of the products in the market focus on teaching
concepts of coding like conditional statements, loops,
variables, data, etc. But not as a whole.

● Some board games might require a game master to assist.
● Most of the digital game in market follows drag and drop

mechanism or stack instruction and play mechanism.
● Most of the games teach CT through some form of coding

concepts.
● Games which teach CT with real life examples are very

rare, so we can use this opportunity.
● There are no full-fledged explicit games to teach

computational thinking. In most of the existing games, its
implicit.

32

Informal interview with teachers

Since the students themselves were not aware of computational
thinking, getting insight from them was challenging as well as the
teachers since they are not practising computational thinking in
current cirriculum. So few informal interviews were done with
CBSE teachers to understand how computer science was taught in
school.

This is not primary research. Users will be involved in the project
later during the playtesting and iteration stage.

● Most schools start teaching python directly after the
fundamentals and history of computer science.

● Required algorithms were taught only when addressing
specific questions in the book.

● Only python IDE was used to teach coding. No additional
tools are used.

● The growth of difficulty in programming increases
exponentially. They spend time on small commands
initially, and later, parts of the subject get less attention.

● Most of the programming problems in the current
curriculum are mathematical-oriented.

● There was not enough project-based learning in the
current curriculum.

Upon contacting Prof. Sridhar Iyer, from Education technology in
IITB. We got a PhD. Student Spruha Satavlekar, who works on
computational thinking as a subject matter expert to assist us in
this project.

33

5. Defining

This section presents how we briefed the requirements to create
the game. First, we started analyzing the content and how it could
be viewed, taught, and various skills needed for achieving it and
then figuring out the properties required in the game to teach
computational thinking. Later we talked about the learning
objectives achieved through the games.

Various ways to do CT

We listed down all the possible ways in which steps of
computational thinking (decomposition, pattern recognition,
Abstraction, and Algorithms) will be achieved. We decomposed
the steps into more minor elements to analyze if we could map
any context to teach these four steps, as shown in figure 27.

Fig 27. Various ways in which decomposition, pattern recognition, abstractions, and algorithms can be achieved.

34

Skill needed to perform CT

Defining the skills required to perform (Decomposition, pattern recognition, Abstractions, Algorithms), The game designed should have a list of
skills mentioned in figure 28.

Fig 28. Various skills required to perform decomposition, pattern recognition, abstractions, and algorithms.

35

Requirements to create the game:

Since the concept is to teach itself a way of thinking, i.e., it is a process or procedure that does not have a context on its own, It was challenging to
figure out the appropriate content for the game that can accommodate the concepts of computational thinking shown in figure 29.

Fig 29. Requirements to create content for the game.

36

To ideate the game's content, we detailed out the elements to be present in the game, which facilitate the process of CT (Decomposition, pattern
recognition, Abstraction, Algorithms), listed in figure 30.

Fig 30. Various elements must be present in-game to teach decomposition, pattern recognition, abstractions, and algorithms.

37

Defining learning objectives

Using Gagne/Briggs format, learning objectives were written for each
concept of computational thinking.

● Given that the game was played by students (Situation),
they will be capable of thinking about how to break down
(learning capability) more extensive tasks /problems
/scenarios into workable parts (objects) by playing some
parts of the game(action).

● Given that the game was played by students (Situation),
they will be capable of recognising similarities or
commonalities or relationships (learning-capability)
between elements (object) by playing some parts of the
game (action).

● Given that the game is played by students (Situation), they
will be capable of identifying core functional elements
(learning capability) from the recognised pattern (object)
and applying it to other similar situations (learning
capability) by playing some parts of the game (action).

● Given that the game was played by students (Situation),
they will be capable of creating steps to solve problems
(learning capability) with the available resources (object)
by playing some parts of the game (action).

38

6. Ideations

listed ideas in the upcoming session are not end-to-end ideation.
We listed down the ideation of the game ideas. Detailed
mechanism and play rules will be defined after the context and
learning objective are met.

To solve any problem using Computational thinking, it is necessary
to follow the steps of Computational thinking in the order of
(Decomposition, pattern recognition, Abstractions, and
Algorithms). However, to teach the concepts, the order can be
shuffled to teach the concepts, and when applying in-game,
players can or cannot follow the sequence.

We started Ideating based on computational thinking concepts
individually and combinedly. Some of the ideas are listed below:

Ideation based on topic
1. Pattern recognition using tangrams
2. “Shoot a question”, to lean decomposition
3. “Instruct” to teach Algorithm

Ideation based on context
4. A new Crafting system
5. Computer science game
6. “Object forming” as a game
7. Construction game

39

Ideation based on topic

1. Pattern recognition using tangrams

Game elements
● Picture cards
● Or tangrams (shapes)
● Or transparent picture cards
● Draw pouch with all elements

How the game works:

● There will be a context card that reveals the common
theme for the round.

● In each round, players can take some of the tangrams, or
they can play the tangrams on the desk.

● They can stack the tangrams in their hand in turns.
● A team which forms the tangrams based on the context

win as shown in figure 31.

Possible Learning outcomes:

● Visual pattern: when players arrange various tangrams,
they will be able to identify visual patterns of tangrams.

● Orientations: Players will get geometry concepts like
symmetry, orientations, rotations, etc.

Fig 31. Tangram game.

40

2. “Shoot a question”, to lean decomposition

Game elements:

● Context/scenarios cards: Question or problem (eg: fire
accident, in cotton factory)

● Answer deck: list of Answer cards for the scenario (eg:
like use water, use sand, etc..)

How the game works:

● It is a team game, a team size of 2
● Each team picks a list of Context cards.
● A team asks another team questions based on the context

card on each turn.
● Playing team answers with respective cards in their hand.
● Each answer card has different points, so the opposite

team has to break down the scenarios and ask questions
based on that.

● At the end of each round, points were calculated, and the
team that gathered more points wins.

Possible Learning outcomes:

● Question decomposition:
○ Players will be able to think of multiple sub

scenarios
○ As the game continues, players will learn how to

ask important questions.

41

3. “Instruct” to teach Algorithm

Game elements:
● Situation cards: (e.g., how to brush)

How the game works:

● It is a team game, a team size of 2.
● One person in the team acts like a robot, and another

person has to instruct them on the situation opposite team
dictates.

● Exact step-by-step instruction has to be given.
● The opposite team will check if they perform anything

more than they were instructed.
● If the robot person of the team overrides the instruction,

their team losses.
● Each turn, players pick up the situation card and

instruction happens within the stipulated time.

Possible Learning outcomes:

● Task decomposition skill:
○ Players will be able to think of how to approach a

task in small steps before instructing.
● Sequential thinking skill:

○ Players will be able to, from steps of instruction, to
instruct teammates.

● Communication skills:
○ Players will gain communication skills since the

game involves many conversations.

Fig 32. Instruct game idea

42

Ideation based on context

4. A new Crafting system

Game setting:

● Single-player digital game
● World: Alien planet

○ Various types of ruins
○ Various types of vegetation

● Type: Exploratory and survival type

How the game works:

● It is a single-player game similar to Minecraft, but it has an
entirely novel crafting system that teaches computational
thinking.

● The player will be stranded on an alien planet and trying to
understand the world and survive.

● Refer to figure 33, for example.

43

Fig 33. Gameflow diagram with an example.

Learning outcomes:

● Observation skill:
○ Players have to observe new elements in the game

to break them down since they are new and
unfamiliar objects.

● Pattern recognition:
○ the player has to find commonalities in the objects

collected to form a new craft skill
○ Also, during crafting, materials have to be placed in

a particular pattern to form items, just like in the
game mine-crafts

● Algorithm

○ Crafting objects in the game requires sequential
thinking.

Drawbacks:
● We were not considering this idea because the

game's complexity demands computer generation,
making it a single-player digital game.

● Learning through collaborative aspects will be lost.
● And not enough time to prototype such complex

game mechanisms.

44

5. Computer science game

I am abstracting the whole coding concept into a card game to
teach computational thinking.

Game elements:

● Data cards: Contains numbers, variables, and strings (all
rewritable)

● Operator cards: Mathematical operators
● Variable / memory cards: Types of memory blocks
● Condition cards: Greater than, lesser than, equal, unequal
● Abstracted function cards: rewritable cards to store

small program blocks
● Loop cards: creates a loop of functions
● Goal cards: small programs as task

How the game works:

● Players play in teams of 3 or 2 members
● A player picks goal cards for around (which are small

programs, eg: find the max of 3 numbers)
● In each turn, the player has to draw cards and play a few

cards on the desk
● The round continuous until they finish the logic
● Each player's turn they can counter the action of another

player by placing respective cards, or they can build their
logic

● Players can abstract some stack of instructions into
abstract cards and use it later.

● Team that tries to create a logic first wins the game.

Learning Outcomes:

● Computer science knowledge:
○ Players will be able to understand the functions of

essential coding elements.
● Math:

○ Since most of the programming deals with simple
mathematical problems.

● Logical thinking skills:
○ by playing with logic cards and forming small logic

in the games
● Strategy breakdown skill:

○ Players will gain the ability to analyse how other
players move and recognise their play patterns and
how to counter them.

● Problem breakdown:
○ Players have to think about how to attain smaller

parts for the given problems (e.g., if the program is
to find a greater of 3 numbers, they have to think
about what all they need, i.e., three memory to
store, comparison cards, etc..)

● Algorithms:
○ The whole game involves performing algorithms in

turn by turn order.
● Abstraction Skill:

○ By reusing the same cards they play, like creating
small predefined functions.

45

6. “Object forming” game

Game elements:

● Context cards: daily life things
● data cards: resources
● abstract cards: mechanisms/functions
● Algorithm cards: Instructions (like screw it, weld it)
● arrangement cards: relationships
● Each card has its own deck.

Any objects can be broken down into data, arrangements,
instructions, and mechanisms, as shown in Table 7.

How it works:

● It is a team game. Players form 2 people team.
● Each player, in their turn, either picks cards from each deck

or trade cards.

● The goal is to complete as many contexts/objects as
possible.

● Game mechanics follow the trading of cards
● Whoever finishes the context first wins.

Possible Learning outcomes:

● Resource breakdown:
○ Players break down objects into smaller parts with

prior knowledge.
● Strategy breakdown skill

○ Players will gain the ability to analyse how other
players trade cards and counter them by restricting
required resources.

● Collaboration skill
○ It is a team game, so players have to deal with

resources within the team to finish the objects.
● Manufacturing processes:

○ Players will be able to understand how objects
were made as they play the game.

Table 5. “Object forming” game perspective.

46

7. Construction game

Another form of the previous idea which involves the context of
the daily object in a construction game.

Game Setting:

● Buildable cards: Daily life things (goal is to build, eg:
watch)

● Resources cards: All materials required to build ((gears,
hands, glass, leather, rubber, battery))

● Clue cards: in case people get stuck
● rewritable cards: acts as abstract cards, over which

people can write anything.

How it works:

● It is a team game (2 per team)
● The team's goal is to build objects, a team that creates the

first three objects wins.
● Each turn, players can either.

○ Take a buildable card (max four only can be taken
by a player)

○ Take resources
○ Instruct a teammate and make him build
○ abstract some built subsystem into abstract skill

47

Possible Learning outcomes:

● It can teach all steps of Computational thinking (
Decomposition, pattern recognition, algorithm,
abstraction)

● Resource breakdown:
○ Players break down objects into smaller parts with

prior knowledge.
● Strategy breakdown skill:

○ Players will gain the ability to analyse how other
players collect resources and restrict it.

● Collaboration skill:
○ It is a team game, so players have to deal with

resources within the team to finish the objects.
● Manufacturing processes:

○ Players will be able to understand how objects are
made as they play the game.

● Sequential thinking skill:
○ Players will be able to form steps of instruction to

instruct their teammates.
● Communication skill:

○ Players will gain communication skills since the
game involves many conversations.

Feedbacks:

● Players can also invent some innovative objects not in the
context card during the gameplay.

● How do they visualise constructing objects?
● The situation can be given to analyse instead of objects.

Situations and scenarios will have more options for
students to think about while constructing objects with
prior knowledge .

48

Idea Selection
Out of all the ideas mentioned above, the seventh idea,
“construction game,” seems to have the potential for the listed
reasons:

● This idea can accommodate all the aspects of
Computational Thinking (Decomposition, pattern
recognition, Abstractions, Algorithms)

● Also, the flexibility of forming rules around the context of
the construction game.

● It is a team game so it has possibilities for collaboration
and discussion

● Players can decode other team's strategies, which creates
competitive gameplay

● Out of computer science context.
● Outside any curriculum context, it teaches with day-to-day

objects that students easily recognise.
● Possibility of including various other technologies /

tangible items into the gameplay.
● The same concept can be extended into a game with

day-to-day scenarios instead of objects.
● More opportunities for other kinds of learning.
● Also, this will be a cards/board game, which gives a

temporal advantage in prototyping and testing compared
to digital considering the short period of this project.

Moreover, mixing and matching some of the other above
mentioned ideas were also used to create the game.

49

7. Content design of the
game

Content of the construction game was designed considering the
day to day life activities of students in high school. Such that they
are familiar with the items they are going to build, and they can
focus on the mechanism and gameplay without spending time
learning about the content.

To understastudents't’s interest and day to day activity, we floated
survey questions as shown in figure 34. The survey had questions
like.

● The game they play.
● How often they play games.
● Board games they played.
● An educational game they played.
● Interesting day-to-day activity.
● Things they carry/use in school .
● Types of punishment they see in schools.

Contents of ‘interesting day to day activities’ and ‘things they use
in day to day activities’ are considered to make scenario cards in
the game, along with the respective resources cards required to
solve them.

Content for the game was developed by considering the daily
objects, building scenarios around them, and breaking them down
to find the resources required and later grouped all the similar
scenarios. The list of scenarios, resources, and content has been
mentioned in the excel sheet, as shown in figure 35.

Fig 34. Excel sheet containing the student interest data.

Fig 35. Excel sheet containing the content of the game.

50

8. Game Design

Game instruction link / Gameplay video link

Fig 36. Game play with our batch mates.

51

https://drive.google.com/drive/folders/1F2Kp1-RnEgRQ-6nYUunjp1KRzyG8rGha?usp=sharing

Game Design
This is a Construction game where players compete in teams to
build objects. The game has two parts. One is resource
collection, and the next is the building mode(algorithm mode).
The following section explains the game in detail. This game has
matured over various rounds of iterations.

The following are explained in this section:
● Game placement.
● Game elements.
● Game setting.
● Game flow.
● Results of the game.
● Game from the player’s prespective.
● Where and when they learn CT in the gameplay.

Game Placement

This game was designed to be played in a workshop with some
game master around, although this game can also be played without
a game master. Ideal game play time was around 1hr. The game can be
used along with the other computational thinking activities also.
Game master or referee was required since the players were school
students and some inputs are needed to resolve conflicts now and
then or to guide them when they go wrong somewhere.

Fig 37. Game play

Fig 38. Game play testing with school students.

52

Game Elements

This excel sheet contains the list of objects and scenarios
considered in the game.

Scenario / buildable Cards:
Scenario that the player has to tackle, for which the player needs
to make some objects, as shown in figure 39. A single scenario can
have multiple ways of solving it. It is up to players on what they
want to build.

Resource cards:
Each card has a resource name, type of materials, and points, as
shown in figure 39. A plural resource card can be used multiple
times in the same building. A singular resource card should be
used only once during construction.

Abstracted function Cards:
These are mechanism cards that are abstractions of some working
function, also it is made up of various resources. Players can use
this card in place of multiple resources. These are treated as skill
cards.

Power card:
To make the game fun, there are few power cards like steal,
prevent, skip, create your resource etc. Players can use it any time
in the game.

Construction Sheet: It is a white paper which has grids and
instruction guides on which players draw to construct objects, as
shown in figure 40.

Fig 39. Explanation of game elements.

53

https://docs.google.com/spreadsheets/d/1gNc4t4lw1M1AotQ5C05drjBzN9TVN4JbxApoOej6Njo/edit?usp=sharing

Fig 40. Construction sheet, in which players draw.

Game setting

Initial game settings were shown in figures 41 and 42.

● Four-player game with two people on each team.
● 16 resource cards open up on the table and it gets

replenished as people draw it.
● Abstracted function cards will be arranged in the slots.
● The scenario cards, Power cards, lies upside down.
● Construction sheets are given to players when they wish

to build.

Fig 41. Explanation of game settings.

Fig 42. Excel sheet containing the content of the game.

54

Player Actions

● In each turn a player can either:
○ Take a maximum of two scenario cards.
○ Take a maximum of 3 resource cards.
○ Go into building mode (collaborate and build).
○ Go into upgrade mode (to finish the existing build).
○ Exchange resource cards with teammates.
○ Take 1 abstracted card (only after 1st successful

build).

● After a successful build. The player gets the respective
points, can take three power cards, and gets access to take
abstracted cards.

● Power cards can be used any time in the game.

● Team members cannot reveal scenario cards to other team
members. Only resource cards can be revealed to
teammates.

Gaining Points

Every time a team successfully builds something. The team gets
the points from resource cards used to build the specific object.
The points accumulate each time a team builds a new object.

Winning conditions

The game lasts several rounds, and the player address many
scenarios. At last, the winning conditions are determined by:

● Point-based: The first team to get more than 30 points,
wins the game.

● Time-based: The one who scores the maximum point
within the time wins the game.

55

The game flow starts from here.

This game has two part. First is resource collection, where players
use decomposition, pattern recognition and abstraction.
The 2nd part is the building (algorithm mode), where the player
uses algorithms and abstraction.

Resource collection:

Game flow:

● The player first picks up the scenario card.
● Then slowly, the player picks the related resource card

from the pile of resource cards, which will help them
tackle the scenarios.

● If they run out of related resources, they can pick a new
scenario card anytime.

● Players can discuss and exchange resource cards with
their teammates.

● Once they collected enough resource cards to address the
scenario.

● The team can go to Algorithm mode (building mode).

Algorithm mode (building mode)

Once a team has enough resources to build any object. They can
put down the specific scenario card upside down and shout, “I am
going to algorithm mode”.

In building mode, the team gets a construction sheet, and they
have to draw to construct an object.

In algorithm mode, roles will be assigned:

Active team: Instructor, Builder

Opposite team: Supervisors

Instructor: a player who starts the building process they instruct
a teammate to build.

Builder: another teammate acts like a robot and executes (draws)
whatever the instructor says.

Supervisor: opposite team members who monitor if the builder
mis-performs the instruction.

Game flow:

● The instructor can start to instruct his teammate (builder)
to start building the objects

● Instructors can use the instruction guide to form
sentences.

● The builder has to draw whatever the instructor says, on
the construction sheet.

● Supervisors will be monitoring if the builder does
something apart from what the instructor says and if they
find any, they can stop the construction.

● After the building is done. Building reveal the scenario
card.

● Supervisors will judge the built object, and have to agree
upon the functionality of the object.

● Building team can justify it. If they succeed, they win the
points from the used resource cards

56

Scaffolding for providing Instruction in
algorithm mode

● Use Object card: (which resource card you are using)
● Define Size: (what size you want to draw the object)
● Placement: (where do you instruct to place the object)
● Alignment: (how do you align the placed object to others)
● Process: (you want to do any process to the objects, like

drill a hole from the side)

Previous Iterations

Before the final prototype, the paper prototype was build to test
various iterations as shown in figure 44, three to four iterations of
design changes have been done to the paper prototype, paper
prototype helps in quickly changing rules and dynamics to
evaluate the iterations.

Fig 44. A previous iteration of the paper prototypes.

Fig 43. Instruction guide in construction sheet.

57

Results of Games

The compilation of objects that players built in the various game
play testing is shown in figure 45.

Fig 45. Objects built in the game play testing.

58

Gameplay from the player's point of
view

This section details what players were thinking during the
gameplay in each stage and how it contributes to the learning of
computational thinking. The text mentioned in the blue colour are
examples.

1. When they pick scenario cards.

They would be thinking about various possible solutions to
address the scenario.

Say for example a scenario card which says “you are responsible
for planning a children's playground in school. What will you
build?”

Now the player has to think about what kind of items will be in
the playground. Like a swing, seesaw, slides, merry go round, etc.
Now he had decomposed the scenario into many possible
directions. And after choosing one, if they chose to build a swing,
they would be decomposing swing to think about materials that
make up swing (chains, rod, seats etc).

2. When they are looking at the resource cards.

After deciding on what they wanted to build, they would have a
list down resources needed to build the object in their head. When
they were looking at the resource cards they would be cross
verifying if it was there and they would try to pick those cards.

Sometimes they will be looking at the resource cards in the deck
and back trace if this resource would help them to build that
specific object they choose.

Say for example: If the player decides to build a swing. He already
has a rod as a resource but the resources deck doesn't have a
chain or string needed for that, but other resources like screws
and seats are present in the deck. Now the player can change the
object according to the materials and he can choose to build a
sea-saw instead of a swing.

Here is when they branch their thinking, if this resource is
available they would choose one object to build or if that was not
available they would go for another other object. So they were
continuously branching their thoughts.

In both ways, they were trying to decompose the object into
smaller pieces to pick resources.

3. When they are looking at other picking the resources

During others' turn, when others were picking the resource cards,
the player would be trying to guess other player’s scenario card
based on the resources they picked. By analyzing the pattern of
resource cards other player picks, and understanding the
relationship between the resources they picked.

Say for example: When others were picking resources like battery,
wire, switch etc. they could easily analyze the pattern and
determine what object others would possibly build, that it could
be something to do with the electric circuit, it could be torch, bell
etc..

59

4. When they are in Algorithm mode.

When Instructing the player has to think about the sequence of
steps and in which they have to unfold resources, and also think
about how to deliver the instruction precisely by using the
instruction guide. Players can get creative with the recourse and
use any kind of process, so they will be thinking about various
ways to build.

For example: When they were instructed to build a swing, they
first looked at various resources in their hand and they instructed
the teammate to cut the rods into various pieces. And mention the
dimensions and then build the frame, then attach the chains to it,
then add the seat and then weld them together.

5. When they are looking at Abstracted function cards .

When they look at the abstract card they see if the
functions/mechanism present in the card is a part of the object
that they are trying to build. So they might pick the mechanism
and use it in the object instead of picking many resources from the
resources deck.

Say for example: if they wanted to build scissors for the specific
scenario card, instead of going for resources like rectangular
pieces, holders, screws and making the fulcrum mechanism They
can directly pick the middle fulcrum mechanism card from the

abstracted cards deck and build scissor with it.

60

Where and when they learn CT in the
gameplay
There are several places in the game where the players learn
about Computational thinking either knowingly or unknowingly,
those are listed below.

Decomposition:

● When they analyse the scenario card and find multiple
ways to solve the problem.

● Breaking down the objects and thinking about the parts
that make them.

Pattern recognition:

● recognizing the draw pattern of the teammate.
● recognizing the draw pattern of the opposite team.
● recognizing which resource to pick first based on

decomposed objects.
● Constantly thinking about what resource to pick.
● Recognizing the pattern to which the builder responds

when he is drawing and adapting to a style of instruction.

Algorithm:

● During building mode they think about how to instruct
their teammate, thinking in sequential order about what
comes first and next.

● Since the builder acts like a robot. precise instruction has
to be given. The precision of instruction by considering all

possible mistakes a builder can make just like how a
computer does.

Abstraction:

● And when they are trying to use the abstracted function
card while making new objects

Other learnings:

● Collaboration Skill
● Communication Skill
● Manufacturing process
● Mechanisms

61

9. Evaluation

Evaluation method

In the Initial stages, various types of evaluation were carried out. With
direct subjective questions about computational thinking,
questionnaire with various examples of computational thinking and
game engagement questionnaires.

Later after a few iterations of the game, a new evaluation plan was
made in which game quality was measured along with some
qualitative findings.

For finding game quality MEEGA+ (A Method for the Evaluation of
Educational Games for Computing Education) [17] was used. For
qualitative analysis, think-aloud experiments in various stages of
game play were performed, and Think-aloud analysis was carried out
for a post-test where players were asked to solve some hypothetical
problems.

Game testing evaluations were carried out with 10th school students
from IIT KV for each iteration of the game and also a few rounds of
testing with our batchmates to get more insights from thinking aloud
evaluation.

Fig 46. Game play testing session in KV school.

Fig 47. Game play testing of the final prototype.

62

Game quality evaluation using the MEEGA+
model

The Excel sheet with questionnaire data.

MEEGA+ is a systematic model to analyse educational games
(digital and nondigital ones) [17] to evaluate their perceived
quality from the student’s perspective in the context of computing
education.
It consists of a list of a questionnaire which was answered on a
5-point Likert scale with response alternatives ranging from
strongly disagree to strongly agree.

Fig 48. Dimension in MEEGA+ evaluation of the model.

MEEGA questionnaire covers the dimensions like useability,
confidence, challenge, satisfaction, social interaction, fun, focused
attention, relevance (content), and perceived learning. Also, the
Cronbach's alpha value of the questionnaire is above 0.9 which
indicates the reliability of the questionnaire.

Dimension/Sub

dimension

Item

No.
Description

Usability Aesthetics
1

The game design is attractive (interface, graphics,

cards, boards, etc.)

2
The text font and colors are well blended and

consistent

Learnability
3

I needed to learn a few things before I could play

the game

4 Learning to play this game was easy for me

5
I think that most people would learn to play this

game very quickly

Operability 6 I think that the game is easy to play

7 The game rules are clear and easy to understand

Accessibility
8

The fonts (size and style) used in the game are

easy to read

9
The colors used in the game are clear and

meaningful

User error

protection

10 The game prevents me from making mistakes

11
When I make a mistake, it is easy to recover from

it quickly

Confidence
12

When I first looked at the game, I had the

impression that it would be easy for me

63

https://docs.google.com/spreadsheets/d/1v2AgxylBXG2cjMZ4FUEin_RkrvOUQsAnD58HizhNHnc/edit?usp=sharing

13
The contents and structure helped me to become

confident that I would learn with this game

Challenge 14 This game is appropriately challenging for me

15

The game provides new challenges (offers new

obstacles, situations, or variations) at an

appropriate pace

16
The game does not become monotonous as it

progresses (repetitive or boring tasks)

Satisfaction
17

Completing the game tasks gave me a satisfying

feeling of accomplishment

18
It is due to my personal effort that I managed to

advance in the game

19
I feel satisfied with the things that I learned from

the game

20 I would recommend this game to my colleagues

Social interaction
21

I was able to interact with other players during the

game

22
The game promotes cooperation and/or

competition among the players

23
I felt good interacting with other players during

the game

Fun 24 I had fun with the game

25
Something happened during the game (game

elements, competition, etc.) which made me smile

Focused attention
26

There was something interesting at the beginning

of the game that captured my attention

27
I was so involved in my gaming task that I lost

track of time

28
I forgot about my immediate surroundings while

playing this game

Relevance 29 The game contents are relevant to my interests

30
It is clear to me how the contents of the game

make me identify some patterns

31
It is clear to me how the contents of the game

make me understand general mechanisms

32
It is clear to me how the contents of the game

make me think about breaking down the objects

33
It is clear to me how the contents of the game

make me think of instructions step by step.

34
This game is an adequate teaching method for

thinking skill

35
I prefer learning with this game to learning

through other ways

Perceived learning
36

The game contributed to my learning in

problem-solving in some scenarios

37
The game allowed for efficient learning compared

with other activities in the school

Table 6. MEEGA questionnaire.

Around three game playtesting sessions were conducted with 4
people in each gameplay. Which leads to the 12 entries. Later the
data were coded as: Strongly Disagree (-2) , Disagree (-1),
Indifferent (0), and Agree (1). Strongly Agree (2). Average, median
and frequency are calculated to draw insights.

64

Quantitative results for measuring game quality

The data were coded & tabulated in an excel sheet to analyze as shown in table 7. Later mean median, and frequency was calculated, and
visualized in the graph as shown in figure 49 and 50

Table 7. Data collection of the MEEGA questionnaire.

Fig 49. Mean and median graph of the MEEGA questionnaire.

65

Inference

Questions which got bad scores, whose median is below 0,
● 5. I think that most people would learn to play this game

very quickly.
● 7. The game rules are clear and easy to understand.
● 10. The game prevents me from making mistakes.
● 11. When I make a mistake, it is easy to recover from it

quickly.
● 12. When I first looked at the game, I had the impression

that it would be easy for me.
It indicates that the game is performing poorly in sub-dimension
of useability like “error prevention”, some aspects of “learnability
of the game”, and “first impression on ease of play”.

For questions which were indifferent, the median is 0, which
means not much insight can be drawn from these questions.

● 18. It is due to my personal effort that I managed to
advance in the game. (it could be combined team effort
which is required in the game)

● 28. I forgot about my immediate surroundings while
playing this game, (but the other two dimensions in
focused attention got scores above one).

Apart from these questions, all other dimensions of games were
performing well and had a median above one. Dimensions like a
challenge, social interaction, fun, focused attention, satisfaction,
relevance, and perceived learning have good scores. Quantitative
data shows that the overall game seems to be performing well.

Fig 50. Frequency chart of the MEEGA questionnaire.

66

Qualitative analysis

Observations:

By notes taken during the gameplay and also by analysing the
recorded video, observations are presented in the below section.

Previous iterations:

● Players were keen on building the objects.

● The players didn’t make objects according to my
expectations. They made some novel objects for the
same scenarios with whatever resources they had.

● There was always a moment of surprise for everyone
when they finished the construction of any object.

● The game's implementation of decomposition and
algorithm seems to be clearly visible during gameplay,
but they didn’t use mechanism abstraction in the game.

● There were lots of discussions during an exchange of
cards, and good team dynamics were found.

● During the justification of the objects made by teams,
surprisingly there were no conflicts, and a good
inter-team interaction was found.

● They used erasers a lot initially when drawing, which
indicates the instructions given were not accurate.

Final iteration:

● “Steal power cards have to be removed since players were
keen on noticing what resource cards others were drawing
with the intention to steal rather than the intention to
figure out what other team is going to build.

● The opposite team doesn't tend to supervise the building
action as expected. Most of the time they were distracted
by their own resources and they pay attention to the
building, more during the start and at the end of the
building.

● People reported error prevention was not there in the
game, when questioned why? They mentioned it's hard to
prevent errors, especially in building mode.

● They were picking resources with wide or vast
applications when none of the resources are available for
the specific scenario cards.

● Players rarely used the abstarted function cards, and have
to make them use it more to realize how abstraction
works.

● Players didnt use much scenario cards.

67

Strong aspects of the game

According to the survey results, the strong aspects of the game are:

● The game was engaging and forces one to be creative to
solve problems, and also makes you better at giving
detailed instructions.

● It forces thinking, learning about building mechanisms,
product design, and breaking down objects to small
elements.

● Teaches problem-solving in a step by step approach.

● Makes peoople think about various processes, how to
break down in smaller steps, and how to communicate
instructions.

● The game idea was excellent. The game has made me
creatively think more than usual.

68

Learning evaluation

In order to determine if students were able to grasp concepts of
computational thinking, think-aloud analysis was carried out after
the game play.

Think aloud analysis on gameplay

After the gameplay was done, think aloud analysis was performed
with all the players and recorded their voice.
Interview protocol was set with the base questions, and probed
them more whenever required.

Think aloud evaluation was performed for all the possible actions
in the game. The results were recorded, and later interpreted.

The text in blue are the questions asked and the text in green
are inferences from the think-aloud analysis.

1. When asked, “what were you thinking when you had a
scenario card in your hand?”

Most of them replied:

“I was thinking about the list of objects to make and all the
resources needed to make the object required for the
scenario”

Some of them replied:

“I will start picturing an overview of the object, then I look
at my resource cards again. And try thinking or fitting the

object to make a product, or go back and forth until I come
up with a product.”

“I didn't notice the constraints in the that much since I was
into thinking about the objects”

It is evident that almost all the players who played the
game were doing decomposition for the objects required
to build.

2. “What were you thinking when you were looking at the
resource cards in the deck and when picking it?”

Most of the players replied:

“What resources cards can be used to complete my scenario”

“Specifically looking for the resource cards which will be
helpful to build the object I have in mind”

Some of them replied:

“Can I make any other new object with the resource in the
resource deck”

“What resource could be tweaked the most, which have a
wide or vast application, I would go for it if I don't have
anything relevant to my scenario card”

It is evident that they already have a list in their mind and
they are looking for the resources in the deck, which

69

means the breakdown of scenario and object has already
happened in their head.

3. What were you thinking when others were picking the
resource card?

Most of the players replied:

“I was trying to remember all the resource card which
others are picking”

“I was keeping track of what other players picking inorder
guess what they are building”

“I didn't want them to pick resource cards which are
necessary for me”

“How to obstruct the other player, based on what they pick”

Some players replied:

“That they are keeping an eye on what other are picking so
that they can steal the cards if the resource is required for
them”

“I was curious about what is beneath the current resource
card when other pick the top card”

It is evident that they were clear about keeping track of
what resources others were picking. Also, they were trying
to guess the pattern, based on the sequence and type of
resource the other teams were picking, in order to figure
out others build.

4. What are your thoughts when you are instructing your
teammate?

Most of the players replied:

“I was extra careful not to use eraser while
building(Drawing), since the use of eraser has negative
points”

“How to instruct as clear and precise as possible”

“How to use the grids ,boxes and processes in the sheet”

“That I have to instruct in the way teammate would
understand and draw it”

Some players replied

“Was thinking, with what resource should I stared building
and what resource to use next next”

“I was trying to frame the instructions in our common
language since the teammate is my friend”

“How to make the object look as convincing as possible for
the other team”

It is evident that they were clear about giving precise
instructions. And they were doing sequential thinking to
create steps required to instruct.

70

5. What were you thinking when you were looking at the
abstracted cards?

Most of the players replied:

“Initially was curious, confused and little intimidated, after
looking at visuals and the card for longer, it made sense”

“What are the resources I could replace one of those cards
with.”

“Does the object I am trying to build have any mechanism in
it, and if I can use these cards?”

Few players did not answer this question at all

It is clear that some of them didn't understand the
abstraction in detail. Maybe it's because of the cards or
less importance given to the functions cards in the game.
However, people were able to think about if the abstracted
functions are applicable to their objects.

6. Have you changed the object you wanted to build in
between the game? If so, why?

Most of the players replied:

“When new resources get revealed I always realized there
are alternative ways of building the objects for my scenario
card”

“Yes, I was thinking what other alternative ways to do, how
to cut down the instructions with new resources”

“I changed because I wanted to reduce the instructions
steps, to reduce the error”

Few players replied:

“To increase my points, I was adding more resources to detail
the built”

“I would ratherdetails the same build with more resources
instead of thinking about new scenario/object to build”

“No I have not changed in between, somehow I tried to build
same object I have in mind”.

It is clear that they were dynamically changing some of the
decisions in the game based on what resources were
available to them at that point of the time. They are using
if conditions in their thinking, like, If this resource is
available, go for building this object or go for another
object.

71

Improvements

Game improvements from previous iterations.

● Improved visuals and added illustrations to the cards to
make them easily recognise the resources at a glance and
also it acts as a guid during drawing action.

● Change in placement of illustrations from center to top left
corner. Generally people hold cards in a particular fashion
which reveals only the top left position of the card.

● Mapping multiple objects to a single scenario gives them
creative freedom to switch between objects while
collecting resources.

● Adding more primitive shapes since players were using
primitive shapes more in the game.

● Including the terms of computational thinking in the game
so that verbal assurance helps them associate the action
with the word. For example, every time they are going to
build something, they have to yell “entering algorithm
mode”

● Improved instruction guide, in a visual format, which
provides them scaffolding while instructing others.

● Introduced guides, grids in the construction sheet to
facilitate drawing action.

Improvements after final testing

To improve error prevention:

● Allowing finger pointing action in the construction sheet
helps them to correct the instructions in case it goes
wrong.

● A visual rule book with scenarios could help them easily
recognize rules in case of players during instruction.

● Increasing the font size, and contrast in the abstracted
function cards.

● Switching to standard card size instead of mini cards, will
have more space for contents in the cards.

To improve ease of access:

● Providing various shapes for different types of cards will
help them instantly recognize the cards.

● Switching to standard card size instead of mini cards.

To improve learnings of abstraction:

● People were motivated to attain power cards in the game.
This can be used as an incentive to trigger them to use
abstract function cards more in the game. Eg: if everytime
they pick or use an abstracted function card or use an
abstracted function card, they will get one power card.

General improvements

● Some of the power cards are very distractive, like stealing
resource cards, which makes the players focus on only
stealing other’s resources instead of making them guess
what others are going to build, so it has to be removed.
Power cards that do not affect learning can be present in
games like play twice, skip, prevent, etc.

72

10. Conclusion
We made the game after analyzing various game design
frameworks and various board games, which helped us ideate and
develop a proper context for the game to teach computational
thinking. Later we developed a paper prototype and tested it with
lots of playtesting and iterations to mature the game. Finally, the
evaluation was done to figure out the game quality and learning
outcomes.
It was found that the game was challenging, fun, and exciting to
play. It also pushed players to think creatively along with a lot of
social interactions, although people lost focus after one hour and
thirty minutes into gameplay.

Regarding learning evaluation, players were able to grasp the
concepts of decomposition, algorithm and pattern recognition
very clearly, strongly and explicitly. But they were only able to
understand the concepts of abstraction implicitly.
We conclude that the game has enough potential to teach
computational thinking in a fun and exciting way.

73

Personal learnings

I was able to play multiple board games in a short time and
understand the dynamics of various games, it was fun and
engaging, and it helped me to come up with ideas for designing
this game. I also started applying computational thinking in my
design process whenever it is required, in fact, we used
computational thinking to ideate for this project.
The game design approach was quite different from normal
design thinking. It demanded more playtesting and iterations.
We were able to do a lot of thought experiments where we were
initially visualizing the whole gameplay to test how minor
changes in-game rules affect the whole gameplay.

74

11. References

Publications

1. Piaget, J. (1964). Cognitive development in children:
Piaget.Journal of research in science teaching, 2(3), 176-186.

2. Piaget, J. (2013). Play, dreams and imitation in childhood
(Vol. 25). Routledge.

3. Kudrowitz, Barry & Wallace, David. (2010). The play
pyramid: A play classification and ideation tool for toy
design. Int. J. Arts and Technology. 3.
10.1504/IJART.2010.030492.

4. Cynthia C. Selby. 2015. Relationships: computational
thinking, pedagogy of programming, and Bloom's
Taxonomy. In Proceedings of the Workshop in Primary and
Secondary Computing Education (WiPSCE '15). Association
for Computing Machinery, New York, NY, USA, 80–87.
DOI:https://doi.org/10.1145/2818314.2818315

5. Ting-Chia Hsu, Shao-Chen Chang, Yu-Ting Hung, How to learn
and how to teach computational thinking: Suggestions
based on a review of the literature, Computers & Education,
Volume 126, 2018, Pages 296-310, ISSN 0360-1315,
https://doi.org/10.1016/j.compedu.2018.07.004.

6. Basawapatna, Ashok & Kyu, Han & Koh, Kyu Han & Repenning,
Alexander & Webb, David & Marshall, Krista. (2011).
Recognizing computational thinking patterns. SIGCSE'11 -
Proceedings of the 42nd ACM Technical Symposium on
Computer Science Education. 10.1145/1953163.1953241.

7. Prensky, M.: Digital game-based learning. McGraw-Hill, New
York (2001)

8. https://www.thetech.org/sites/default/files/techtip_computa
tionalthinking_v3.pdf

9. “Developing Computational Thinking in Compulsory
Education” by the Joint Research Centre (JRC), the European
Commission’s science and knowledge service.
https://publications.jrc.ec.europa.eu/repository/bitstream/JR
C104188/jrc104188_computhinkreport.pdf

10. Dsource: Designing for Children - Play and Learn: Caillois’s
Attitudes in Play Experience
https://www.dsource.in/course/designing-children-play-and-
learn/play-theories-and-design/csikszentmihalyi%E2%80%9
9s-flow-theory

11. Dsource: Designing for Children - Play and Learn:
Csikszentmihalyi’s Flow Theory
https://www.dsource.in/course/designing-children-play-and-
learn/play-theories-and-design/caillois%E2%80%99s-attitud
es-play

12. Dsource: Designing for Children - Play and Learn: Piaget’s
Theory of Cognitive Development
https://www.dsource.in/course/designing-children-play-and-
learn/learning-theories-and-design/piaget%E2%80%99s-the
ory-cognitive

13. Kelly, N., & Gero, J. (2021). Design thinking and computational
thinking: A dual process model for addressing design
problems. Design Science, 7, E8. doi:10.1017/dsj.2021.7

14. https://pressbooks.library.ryerson.ca/guide/chapter/1-3-the-
art-of-serious-game-design-conceptual-framework/

15. Hunicke, Robin & Leblanc, Marc & Zubek, Robert. (2004).
MDA: A Formal Approach to Game Design and Game Research.
AAAI Workshop - Technical Report. 1.

75

https://doi.org/10.1145/2818314.2818315
https://doi.org/10.1016/j.compedu.2018.07.004
https://www.thetech.org/sites/default/files/techtip_computationalthinking_v3.pdf
https://www.thetech.org/sites/default/files/techtip_computationalthinking_v3.pdf
https://publications.jrc.ec.europa.eu/repository/bitstream/JRC104188/jrc104188_computhinkreport.pdf
https://publications.jrc.ec.europa.eu/repository/bitstream/JRC104188/jrc104188_computhinkreport.pdf
https://www.dsource.in/course/designing-children-play-and-learn/play-theories-and-design/csikszentmihalyi%E2%80%99s-flow-theory
https://www.dsource.in/course/designing-children-play-and-learn/play-theories-and-design/csikszentmihalyi%E2%80%99s-flow-theory
https://www.dsource.in/course/designing-children-play-and-learn/play-theories-and-design/csikszentmihalyi%E2%80%99s-flow-theory
https://www.dsource.in/course/designing-children-play-and-learn/play-theories-and-design/caillois%E2%80%99s-attitudes-play
https://www.dsource.in/course/designing-children-play-and-learn/play-theories-and-design/caillois%E2%80%99s-attitudes-play
https://www.dsource.in/course/designing-children-play-and-learn/play-theories-and-design/caillois%E2%80%99s-attitudes-play
https://www.dsource.in/course/designing-children-play-and-learn/learning-theories-and-design/piaget%E2%80%99s-theory-cognitive
https://www.dsource.in/course/designing-children-play-and-learn/learning-theories-and-design/piaget%E2%80%99s-theory-cognitive
https://www.dsource.in/course/designing-children-play-and-learn/learning-theories-and-design/piaget%E2%80%99s-theory-cognitive
https://pressbooks.library.ryerson.ca/guide/chapter/1-3-the-art-of-serious-game-design-conceptual-framework/
https://pressbooks.library.ryerson.ca/guide/chapter/1-3-the-art-of-serious-game-design-conceptual-framework/

https://www.researchgate.net/publication/228884866_MDA_
A_Formal_Approach_to_Game_Design_and_Game_Research

16. Ferdig, Richard & Winn, Brian. (2009). The Design, Play, and
Experience Framework. 10.4018/978-1-59904-808-6.ch058.
https://www.researchgate.net/publication/314280472_The_
Design_Play_and_Experience_Framework

17. Petri, Giani & Gresse von Wangenheim, Christiane & Borgatto,
Adriano. (2018). MEEGA+: A Method for the Evaluation of
Educational Games for Computing Education.
https://www.researchgate.net/publication/326722665_MEE
GA_A_Method_for_the_Evaluation_of_Educational_Games_for_C
omputing_Education

18. Tsarava, K., Moeller, K., & Ninaus, M. (2018). Training
Computational Thinking through board games: The case of
Crabs & Turtles. International Journal of Serious Games, 5(2),
25–44. https://doi.org/10.17083/ijsg.v5i2.248

19. Panagiotis Apostolellis, Michael Stewart, Chris Frisina, and
Dennis Kafura. 2014. RaBit EscAPE: a board game for
computational thinking. In Proceedings of the 2014
conference on Interaction design and children (IDC '14).
Association for Computing Machinery, New York, NY, USA,
349–352. https://doi.org/10.1145/2593968.2610489

Tables

1. Table 1. The dual-process model of design thinking and
computational thinking.
https://doi.org/10.1017/dsj.2021.7

2. Table 2. List of categories in Computational thinking.
Ting-Chia Hsu, Shao-Chen Chang, Yu-Ting Hung, How to learn
and how to teach computational thinking: Suggestions based

on a review of the literature, Computers & Education, Volume
126, 2018, Pages 296-310, ISSN 0360-1315,
https://doi.org/10.1016/j.compedu.2018.07.004.

3. Table 3. Categories of learning.
Ting-Chia Hsu, Shao-Chen Chang, Yu-Ting Hung, How to learn
and how to teach computational thinking: Suggestions based
on a review of the literature, Computers & Education, Volume
126, 2018, Pages 296-310, ISSN 0360-1315,
https://doi.org/10.1016/j.compedu.2018.07.004.

4. Table 4. Directions to explore and approach methods.
5. Table 5. “Object forming” game perspective.
6. Table 6. MEEGA questionnaire.
7. Table 7. Data collection of the MEEGA questionnaire.

Figures

1. Fig 1. 11th Std CBSE Computer science book.
http://cbseacademic.nic.in/web_material/doc/cs/1_computer
-science-python-book-class-xi.pdf

2. Fig 2. Minecraft Code by Microsoft, to teach coding.
https://education.minecraft.net/en-us/get-started

3. Fig 3. Make code by Microsoft to teach coding.
https://www.microsoft.com/en-us/makecode

4. Fig 4. Graph showing the relation between DT and CT.
https://doi.org/10.1017/dsj.2021.7

5. Fig 5. Concepts in computational thinking
6. Fig 6. Example of computational thinking in making pizza.

https://www.thetech.org/ctlessons
7. Fig 7. Piaget’s Theory of Cognitive Development.

76

https://www.researchgate.net/publication/228884866_MDA_A_Formal_Approach_to_Game_Design_and_Game_Research
https://www.researchgate.net/publication/228884866_MDA_A_Formal_Approach_to_Game_Design_and_Game_Research
https://www.researchgate.net/publication/314280472_The_Design_Play_and_Experience_Framework
https://www.researchgate.net/publication/314280472_The_Design_Play_and_Experience_Framework
https://www.researchgate.net/publication/326722665_MEEGA_A_Method_for_the_Evaluation_of_Educational_Games_for_Computing_Education
https://www.researchgate.net/publication/326722665_MEEGA_A_Method_for_the_Evaluation_of_Educational_Games_for_Computing_Education
https://www.researchgate.net/publication/326722665_MEEGA_A_Method_for_the_Evaluation_of_Educational_Games_for_Computing_Education
https://doi.org/10.17083/ijsg.v5i2.248
https://doi.org/10.1145/2593968.2610489
https://doi.org/10.1017/dsj.2021.7
https://doi.org/10.1016/j.compedu.2018.07.004
https://doi.org/10.1016/j.compedu.2018.07.004
http://cbseacademic.nic.in/web_material/doc/cs/1_computer-science-python-book-class-xi.pdf
http://cbseacademic.nic.in/web_material/doc/cs/1_computer-science-python-book-class-xi.pdf
https://education.minecraft.net/en-us/get-started
https://www.microsoft.com/en-us/makecode
https://doi.org/10.1017/dsj.2021.7
https://www.thetech.org/ctlessons

https://www.dsource.in/course/designing-children-play-and-
learn/learning-theories-and-design/piaget%E2%80%99s-the
ory-cognitive

8. Fig 8. Caillois’s Attitudes in Play Experience.
https://www.dsource.in/course/designing-children-play-and-
learn/play-theories-and-design/caillois%E2%80%99s-attitud
es-play

9. Fig 9. Graph showing skill level vs challenge level in Flow
Theory.
https://www.dsource.in/course/designing-children-play-and-
learn/play-theories-and-design/csikszentmihalyi%E2%80%9
9s-flow-theory

10. Fig 10. Play Pyramid by Kudrowitz and Wallace.
Kudrowitz, Barry M. and David R. Wallace. “The play pyramid:
a play classification and ideation tool for toy design.” Int. J.
Arts Technol. 3 (2010): 36-56.
https://www.semanticscholar.org/paper/The-play-pyramid%
3A-a-play-classification-and-tool-Kudrowitz-Wallace/9d2ddf7
b5073da301d44b213385dbcd246b82ff6#citing-papers

11. Fig 11. Combined relationship diagram between Bloom’s
Taxonomy Cognitive Domain, computational thinking skills,
and the teaching of programming.
https://dl.acm.org/doi/10.1145/2818314.2818315

12. Fig 12. MDA (mechanics dynamics and aesthetics) framework.
13. Fig 13. The Art of Serious Game Design by Digital Education

Strategies, Ryerson University.
14. Fig 14. DPE framework (Design play and experience)
15. Fig 15. Taco coding App, and tangible elements.

https://www.playshifu.com/tacto/coding
16. Fig 16. Tangiplay app, along with mini tangible elements.

https://www.tangiplay.com/
17. Fig 17. Google project bloks, with all its tangible components.

https://www.i-programmer.info/news/150-training-a-educati
on/9867-google-project-bloks-tangible-programming-for-kids
.html

18. Fig 18. Interface of Scratch programming language.
https://scratch.mit.edu/projects/editor/?tutorial=getStarted

19. Fig 19. Interface of MIT App inventor.
http://appinventor.mit.edu/

20. Fig 20. Interface of Agentsheets.
https://agentsheets.com/

21. Fig 21. Game play screens of the game Lightbot.
https://lightbot.com/

22. Fig 22. Game play screen of games in CodeSpark.
https://codespark.com/

23. Fig 23. Game play screen of game Algorithm city.
https://play.google.com/store/apps/details?id=air.MusterenG
ames.ElHarezmiCoding&hl=en&gl=US

24. Fig 24. Game play screens of game Human resource machine.
https://tomorrowcorporation.com/humanresourcemachine

25. Fig 25. Game play of Crabs & Turtles
Tsarava, K., Moeller, K., & Ninaus, M. (2018). Training
Computational Thinking through board games: The case of
Crabs & Turtles. International Journal of Serious Games, 5(2),
25–44. https://doi.org/10.17083/ijsg.v5i2.248

26. Fig 26. Game play of RaBit EscApe.
Panagiotis Apostolellis, Michael Stewart, Chris Frisina, and
Dennis Kafura. 2014. RaBit EscAPE: a board game for
computational thinking. In Proceedings of the 2014
conference on Interaction design and children (IDC '14).
Association for Computing Machinery, New York, NY, USA,
349–352. https://doi.org/10.1145/2593968.2610489

27. Fig 27. Various ways in which decomposition, pattern
recognition, abstractions, and algorithms can be achieved.

77

https://www.dsource.in/course/designing-children-play-and-learn/learning-theories-and-design/piaget%E2%80%99s-theory-cognitive
https://www.dsource.in/course/designing-children-play-and-learn/learning-theories-and-design/piaget%E2%80%99s-theory-cognitive
https://www.dsource.in/course/designing-children-play-and-learn/learning-theories-and-design/piaget%E2%80%99s-theory-cognitive
https://www.dsource.in/course/designing-children-play-and-learn/play-theories-and-design/caillois%E2%80%99s-attitudes-play
https://www.dsource.in/course/designing-children-play-and-learn/play-theories-and-design/caillois%E2%80%99s-attitudes-play
https://www.dsource.in/course/designing-children-play-and-learn/play-theories-and-design/caillois%E2%80%99s-attitudes-play
https://www.dsource.in/course/designing-children-play-and-learn/play-theories-and-design/csikszentmihalyi%E2%80%99s-flow-theory
https://www.dsource.in/course/designing-children-play-and-learn/play-theories-and-design/csikszentmihalyi%E2%80%99s-flow-theory
https://www.dsource.in/course/designing-children-play-and-learn/play-theories-and-design/csikszentmihalyi%E2%80%99s-flow-theory
https://www.semanticscholar.org/paper/The-play-pyramid%3A-a-play-classification-and-tool-Kudrowitz-Wallace/9d2ddf7b5073da301d44b213385dbcd246b82ff6#citing-papers
https://www.semanticscholar.org/paper/The-play-pyramid%3A-a-play-classification-and-tool-Kudrowitz-Wallace/9d2ddf7b5073da301d44b213385dbcd246b82ff6#citing-papers
https://www.semanticscholar.org/paper/The-play-pyramid%3A-a-play-classification-and-tool-Kudrowitz-Wallace/9d2ddf7b5073da301d44b213385dbcd246b82ff6#citing-papers
https://dl.acm.org/doi/10.1145/2818314.2818315
https://www.playshifu.com/tacto/coding
https://www.tangiplay.com/
https://www.i-programmer.info/news/150-training-a-education/9867-google-project-bloks-tangible-programming-for-kids.html
https://www.i-programmer.info/news/150-training-a-education/9867-google-project-bloks-tangible-programming-for-kids.html
https://www.i-programmer.info/news/150-training-a-education/9867-google-project-bloks-tangible-programming-for-kids.html
https://scratch.mit.edu/projects/editor/?tutorial=getStarted
http://appinventor.mit.edu/
https://agentsheets.com/
https://lightbot.com/
https://codespark.com/
https://play.google.com/store/apps/details?id=air.MusterenGames.ElHarezmiCoding&hl=en&gl=US
https://play.google.com/store/apps/details?id=air.MusterenGames.ElHarezmiCoding&hl=en&gl=US
https://tomorrowcorporation.com/humanresourcemachine
https://doi.org/10.17083/ijsg.v5i2.248
https://doi.org/10.1145/2593968.2610489

28. Fig 28. Various skills required to perform decomposition,
pattern recognition, abstractions, and algorithms.

29. Fig 29. Requirements to create content for the game.
30. Fig 30. Various elements must be present in-game to teach

decomposition, pattern recognition, abstractions, and
algorithms.

31. Fig 31. Tangram game.
32. Fig 32. Instruct game idea.
33. Fig 33. Gameflow diagram with an example.
34. Fig 34. Excel sheet containing the student interest data.
35. Fig 35. Excel sheet containing the content of the game.
36. Fig 36. Game play with my batch mates.
37. Fig 37. Game play.
38. Fig 38. Game play testing with school students.
39. Fig 39. Explanation of game elements.
40. Fig 40. Construction sheet, in which players draw.
41. Fig 41. Explanation of game settings.
42. Fig 42. Excel sheet containing the content of the game.
43. Fig 43. Instruction guide in construction sheet.
44. Fig 45. Objects built in the game play testing.
45. Fig 46. Game play testing session in KV school.
46. Fig 47. Game play testing of the final prototype.
47. Fig 48. Dimension in MEEGA+ evaluation of the model.

Petri, Giani & Gresse von Wangenheim, Christiane & Borgatto,
Adriano. (2018). MEEGA+: A Method for the Evaluation of
Educational Games for Computing Education.
https://www.researchgate.net/publication/326722665_MEE
GA_A_Method_for_the_Evaluation_of_Educational_Games_for_C
omputing_Education

48. Fig 49. Mean and median graph of the MEEGA questionnaire.
49. Fig 50. Frequency chart of the MEEGA questionnaire.

78

https://www.researchgate.net/publication/326722665_MEEGA_A_Method_for_the_Evaluation_of_Educational_Games_for_Computing_Education
https://www.researchgate.net/publication/326722665_MEEGA_A_Method_for_the_Evaluation_of_Educational_Games_for_Computing_Education
https://www.researchgate.net/publication/326722665_MEEGA_A_Method_for_the_Evaluation_of_Educational_Games_for_Computing_Education

